Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.873
1.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727305

BACKGROUND: SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. METHODS: Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. RESULTS: TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA's attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. CONCLUSIONS: These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection.


Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Signal Transduction , Thapsigargin , Tunicamycin , Unfolded Protein Response , Humans , Thapsigargin/pharmacology , Unfolded Protein Response/drug effects , Tunicamycin/pharmacology , Apoptosis/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Endoplasmic Reticulum Stress/drug effects , COVID-19/virology , COVID-19/metabolism , Virus Internalization/drug effects
2.
Open Biol ; 14(4): 240001, 2024 Apr.
Article En | MEDLINE | ID: mdl-38653331

Autophagy is a double-edged sword for cells; it can lead to both cell survival and death. Calcium (Ca2+) signalling plays a crucial role in regulating various cellular behaviours, including cell migration, proliferation and death. In this study, we investigated the effects of modulating cytosolic Ca2+ levels on autophagy using chemical and optogenetic methods. Our findings revealed that ionomycin and thapsigargin induce Ca2+ influx to promote autophagy, whereas the Ca2+ chelator BAPTA-AM induces Ca2+ depletion and inhibits autophagy. Furthermore, the optogenetic platform allows the manipulation of illumination parameters, including density, frequency, duty cycle and duration, to create different patterns of Ca2+ oscillations. We used the optogenetic tool Ca2+-translocating channelrhodopsin, which is activated and opened by 470 nm blue light to induce Ca2+ influx. These results demonstrated that high-frequency Ca2+ oscillations induce autophagy. In addition, autophagy induction may involve Ca2+-activated adenosine monophosphate (AMP)-activated protein kinases. In conclusion, high-frequency optogenetic Ca2+ oscillations led to cell death mediated by AMP-activated protein kinase-induced autophagy.


AMP-Activated Protein Kinases , Autophagy , Calcium , Optogenetics , AMP-Activated Protein Kinases/metabolism , Calcium/metabolism , Calcium Signaling , Enzyme Activation , Ionomycin/pharmacology , Optogenetics/methods , Thapsigargin/pharmacology
3.
Immunopharmacol Immunotoxicol ; 46(2): 192-198, 2024 Apr.
Article En | MEDLINE | ID: mdl-38147028

OBJECTIVE: Endoplasmic reticulum stress (ERS) and Toll-like receptor 2 (TLR2) signaling play an important role in inflammatory bowel disease (IBD); however, the link between TLR2 and ERS in IBD is unclear. This study investigated whether Thapsigargin (TG) -induced ER protein expression levels contributed to TLR2-mediated inflammatory response. METHODS: The THP-1 cells were treated with TLR2 agonist (Pam3CSK4), ERS inducer Thapsigargin (TG) or inhibitor (TUDCA). The mRNA expressions of TLR1-TLR10 were detected by qPCR. The production and secretion of inflammatory factors were detected by PCR and ELISA. Immunohistochemistry was used to detect the expressions of GRP78 and TLR2 in the intestinal mucosa of patients with Crohn's disease (CD). The IBD mouse model was established by TNBS in the modeling group. ERS inhibitor (TUDCA) was used in the treatment group. RESULTS: The expression of TLRs was detected via polymerase chain reaction (PCR) in THP-1 cells treated by ERS agonist Thapsigargin (TG). According to the findings, TG could promote TLR2 and TLR5 expression. Subsequently, in TLR2 agonist Pam3CSK4 induced THP-1 cells, TG could lead to increased expression of the inflammatory factors such as TNF-α, IL-1ß and IL-8, and ERS inhibitor (TUDCA) could block this effect. However, Pam3CSK4 did not significantly impact the GRP78 and CHOP expression. Based upon the immunohistochemical results, TLR2 and GRP78 expression were significantly increased in the intestinal mucosa of patients with Crohn's disease (CD). For in vivo experiments, TUDCA displayed the ability to inhibit intestinal mucosal inflammation and reduce GRP78 and TLR2 proteins. CONCLUSIONS: ERS and TLR2 is upregulated in inflammatory bowel disease, ERS may promote TLR2 pathway-mediated inflammatory response. Moreover, ERS and TLR2 signaling could be novel therapeutic targets for IBD.


Crohn Disease , Inflammatory Bowel Diseases , Taurochenodeoxycholic Acid , Mice , Animals , Humans , Toll-Like Receptor 2/metabolism , Endoplasmic Reticulum Chaperone BiP , Thapsigargin/pharmacology , Endoplasmic Reticulum Stress
4.
PeerJ ; 11: e16683, 2023.
Article En | MEDLINE | ID: mdl-38130926

Background: Thapsigargin (Tg) is a compound that inhibits the SERCA calcium transporter leading to decreased endoplasmic reticulum (ER) Ca2+ levels. Many ER chaperones are required for proper folding of membrane-associated and secreted proteins, and they are Ca2+ dependent. Therefore, Tg leads to the accumulation of misfolded proteins in the ER, activating the unfolded protein response (UPR) to help restore homeostasis. Tg reportedly induces cell cycle arrest and apoptosis in many cell types but how these changes are linked to the UPR remains unclear. The activating transcription factor 4 (ATF4) plays a key role in regulating ER stress-induced gene expression so we sought to determine if ATF4 is required for Tg-induced cell cycle arrest and apoptosis using ATF4-deficient cells. Methods: Two-parameter flow cytometric analysis of DNA replication and DNA content was used to assess the effects of Tg on cell cycle distribution in isogenic HCT116-derived cell lines either expressing or lacking ATF4. For comparison, we similarly assessed the Tg response in isogenic cell lines deleted of the p53 tumour suppressor and the p53-regulated p21WAF1 cyclin-dependent kinase inhibitor important in G1 and G2 arrests induced by DNA damage. Results: Tg led to a large depletion of the S phase population with a prominent increase in the proportion of HCT116 cells in the G1 phase of the cell cycle. Importantly, this effect was largely independent of ATF4. We found that loss of p21WAF1 but not p53 permitted Tg treated cells to enter S phase and synthesize DNA. Therefore, p21WAF1plays an important role in these Tg-induced cell cycle alterations while ATF4 and p53 do not. Remarkably, the ATF4-, p53-and p21WAF1-deficient cell lines were all more sensitive to Tg-induced apoptosis. Taken together, p21WAF1 plays a larger role in regulating Tg-induced G1 and G2 arrests than ATF4 or p53 but these proteins similarly contribute to protection from Tg-induced apoptosis. This work highlights the complex network of stress responses that are activated in response to ER stress.


Activating Transcription Factor 4 , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Thapsigargin/pharmacology , Activating Transcription Factor 4/genetics , Cell Line, Tumor , DNA , Cyclin-Dependent Kinases/metabolism
5.
BMC Cancer ; 23(1): 1153, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38012567

Chronic myeloid leukemia (CML) is effectively treated with tyrosine kinase inhibitors (TKIs), targeting the BCR::ABL1 oncoprotein. Still, resistance to therapy, relapse after treatment discontinuation, and side effects remain significant issues of long-term TKI treatment. Preliminary studies have shown that targeting oxidative phosphorylation (oxPhos) and the unfolded protein response (UPR) are promising therapeutic approaches to complement CML treatment. Here, we tested the efficacy of different TKIs, combined with the ATP synthase inhibitor oligomycin and the ER stress inducer thapsigargin in the CML cell lines K562, BV173, and KU812 and found a significant increase in cell death. Both, oligomycin and thapsigargin, triggered the upregulation of the UPR proteins ATF4 and CHOP, which was inhibited by imatinib. We observed comparable effects on cell death when combining TKIs with the ATP synthase inhibitor 8-chloroadenosine (8-Cl-Ado) as a potentially clinically applicable therapeutic agent. Stress-related apoptosis was triggered via a caspase cascade including the cleavage of caspase 3 and the inactivation of poly ADP ribose polymerase 1 (PARP1). The inhibition of PARP by olaparib also increased CML death in combination with TKIs. Our findings suggest a rationale for combining TKIs with 8-Cl-Ado or olaparib for future clinical studies in CML.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Fusion Proteins, bcr-abl , Oxidative Phosphorylation , Thapsigargin/pharmacology , Thapsigargin/therapeutic use , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Oligomycins/pharmacology , Adenosine Triphosphate/metabolism , Apoptosis
6.
Cell Commun Signal ; 21(1): 307, 2023 10 30.
Article En | MEDLINE | ID: mdl-37904178

Bladder cells face a challenging biophysical environment: mechanical cues originating from urine flow and regular contraction to enable the filling voiding of the organ. To ensure functional adaption, bladder cells rely on high biomechanical compliance, nevertheless aging or chronic pathological conditions can modify this plasticity. Obviously the cytoskeletal network plays an essential role, however the contribution of other, closely entangled, intracellular organelles is currently underappreciated. The endoplasmic reticulum (ER) lies at a crucial crossroads, connected to both nucleus and cytoskeleton. Yet, its role in the maintenance of cell mechanical stability is less investigated. To start exploring these aspects, T24 bladder cancer cells were treated with the ER stress inducers brefeldin A (10-40nM BFA, 24 h) and thapsigargin (0.1-100nM TG, 24 h). Without impairment of cell motility and viability, BFA and TG triggered a significant subcellular redistribution of the ER; this was associated with a rearrangement of actin cytoskeleton. Additional inhibition of actin polymerization with cytochalasin D (100nM CytD) contributed to the spread of the ER toward cell periphery, and was accompanied by an increase of cellular stiffness (Young´s modulus) in the cytoplasmic compartment. Shrinking of the ER toward the nucleus (100nM TG, 2 h) was related to an increased stiffness in the nuclear and perinuclear areas. A similar short-term response profile was observed also in normal human primary bladder fibroblasts. In sum, the ER and its subcellular rearrangement seem to contribute to the mechanical properties of bladder cells opening new perspectives in the study of the related stress signaling cascades. Video Abstract.


Endoplasmic Reticulum , Urinary Bladder , Humans , Endoplasmic Reticulum Stress , Cytoskeleton , Thapsigargin/pharmacology
7.
Am J Physiol Endocrinol Metab ; 325(3): E280-E290, 2023 09 01.
Article En | MEDLINE | ID: mdl-37529833

Stimulation of functional ß-cell mass expansion can be beneficial for the treatment of type 2 diabetes. Our group has previously demonstrated that the matricellular protein CCN2 can induce ß-cell mass expansion during embryogenesis, and postnatally during pregnancy and after 50% ß-cell injury. The mechanism by which CCN2 stimulates ß-cell mass expansion is unknown. However, CCN2 does not induce ß-cell proliferation in the setting of euglycemic and optimal functional ß-cell mass. We thus hypothesized that ß-cell stress is required for responsiveness to CCN2 treatment. In this study, a doxycycline-inducible ß-cell-specific CCN2 transgenic mouse model was utilized to evaluate the effects of CCN2 on ß-cell stress in the setting of acute (thapsigargin treatment ex vivo) or chronic [high-fat diet or leptin receptor haploinsufficiency (db/+) in vivo] cellular stress. CCN2 induction during 1 wk or 10 wk of high-fat diet or in db/+ mice had no effect on markers of ß-cell stress. However, CCN2 induction did result in a significant increase in ß-cell mass over high-fat diet alone when animals were fed high-fat diet for 10 wk, a duration known to induce insulin resistance. CCN2 induction in isolated islets treated with thapsigargin ex vivo resulted in upregulation of the gene encoding the Nrf2 transcription factor, a master regulator of antioxidant genes, suggesting that CCN2 further activates this pathway in the presence of cell stress. These studies indicate that the potential of CCN2 to induce ß-cell mass expansion is context-dependent and that the presence of ß-cell stress does not ensure ß-cell proliferation in response to CCN2.NEW & NOTEWORTHY CCN2 promotes ß-cell mass expansion in settings of suboptimal ß-cell mass. Here, we demonstrate that the ability of CCN2 to induce ß-cell mass expansion in the setting of ß-cell stress is context-dependent. Our results suggest that ß-cell stress is necessary but insufficient for CCN2 to increase ß-cell proliferation and mass. Furthermore, we found that CCN2 promotes upregulation of a key antioxidant transcription factor, suggesting that modulation of ß-cell oxidative stress contributes to the actions of CCN2.


Connective Tissue Growth Factor , Diabetes Mellitus, Type 2 , Animals , Female , Mice , Pregnancy , Antioxidants , Cell Proliferation , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Mice, Transgenic , Thapsigargin/pharmacology , Transcription Factors
8.
Mol Cell Proteomics ; 22(9): 100630, 2023 09.
Article En | MEDLINE | ID: mdl-37562535

Thermal proteome profiling (TPP) is an invaluable tool for functional proteomics studies that has been shown to discover changes associated with protein-ligand, protein-protein, and protein-RNA interaction dynamics along with changes in protein stability resulting from cellular signaling. The increasing number of reports employing this assay has not been met concomitantly with new approaches leading to advancements in the quality and sensitivity of the corresponding data analysis. The gap between data acquisition and data analysis tools is important to fill as TPP findings have reported subtle melt shift changes related to signaling events such as protein posttranslational modifications. In this study, we have improved the Inflect data analysis pipeline (now referred to as InflectSSP, available at https://CRAN.R-project.org/package=InflectSSP) to increase the sensitivity of detection for both large and subtle changes in the proteome as measured by TPP. Specifically, InflectSSP now has integrated statistical and bioinformatic functions to improve objective functional proteomics findings from the quantitative results obtained from TPP studies through increasing both the sensitivity and specificity of the data analysis pipeline. InflectSSP incorporates calculation of a "melt coefficient" into the pipeline with production of average melt curves for biological replicate studies to aid in identification of proteins with significant melts. To benchmark InflectSSP, we have reanalyzed two previously reported datasets to demonstrate the performance of our publicly available R-based program for TPP data analysis. We report new findings following temporal treatment of human cells with the small molecule thapsigargin that induces the unfolded protein response as a consequence of inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase 2A. InflectSSP analysis of our unfolded protein response study revealed highly reproducible and statistically significant target engagement over a time course of treatment while simultaneously providing new insights into the possible mechanisms of action of the small molecule thapsigargin.


Proteome , Proteomics , Humans , Proteome/metabolism , Thapsigargin/pharmacology , Proteomics/methods
9.
Cells ; 12(15)2023 07 28.
Article En | MEDLINE | ID: mdl-37566036

MicroRNAs (miRNAs) are important regulators of embryonic stem cell (ESC) biology, and their study has identified key regulatory mechanisms. To find novel pathways regulated by miRNAs in ESCs, we undertook a bioinformatics analysis of gene pathways differently expressed in the absence of miRNAs due to the deletion of Dicer, which encodes an RNase that is essential for the synthesis of miRNAs. One pathway that stood out was Ca2+ signaling. Interestingly, we found that Dicer-/- ESCs had no difference in basal cytoplasmic Ca2+ levels but were hyperresponsive when Ca2+ import into the endoplasmic reticulum (ER) was blocked by thapsigargin. Remarkably, the increased Ca2+ response to thapsigargin in ESCs resulted in almost no increase in apoptosis and no differences in stress response pathways, despite the importance of miRNAs in the stress response of other cell types. The increased Ca2+ response in Dicer-/- ESCs was also observed during purinergic receptor activation, demonstrating a physiological role for the miRNA regulation of Ca2+ signaling pathways. In examining the mechanism of increased Ca2+ responsiveness to thapsigargin, neither store-operated Ca2+ entry nor Ca2+ clearance mechanisms from the cytoplasm appeared to be involved. Rather, it appeared to involve an increase in the expression of one isoform of the IP3 receptors (Itpr2). miRNA regulation of Itpr2 expression primarily appeared to be indirect, with transcriptional regulation playing a major role. Therefore, the miRNA regulation of Itpr2 expression offers a unique mechanism to regulate Ca2+ signaling pathways in the physiology of pluripotent stem cells.


MicroRNAs , Animals , Mice , MicroRNAs/metabolism , Thapsigargin/pharmacology , Cell Differentiation/genetics , Embryonic Stem Cells , Homeostasis
10.
J Cell Physiol ; 238(9): 2050-2062, 2023 09.
Article En | MEDLINE | ID: mdl-37332264

Orai1 is the pore-forming subunit of the store-operated Ca2+ release-activated Ca2+ (CRAC) channels involved in a variety of cellular functions. Two Orai1 variants have been identified, the long form, Orai1α, containing 301 amino acids, and the short form, Orai1ß, which arises from alternative translation initiation from methionines 64 or 71, in Orai1α. Orai1 is mostly expressed in the plasma membrane, but a subset of Orai1 is located in intracellular compartments. Here we show that Ca2+ store depletion leads to trafficking and insertion of compartmentalized Orai1α in the plasma membrane via a mechanism that is independent on changes in cytosolic free-Ca2+ concentration, as demonstrated by cell loading with the fast intracellular Ca2+ chelator dimethyl BAPTA in the absence of extracellular Ca2+ . Interestingly, thapsigargin (TG) was found to be unable to induce translocation of Orai1ß to the plasma membrane when expressed individually; by contrast, when Orai1ß is co-expressed with Orai1α, cell treatment with TG induced rapid trafficking and insertion of compartmentalized Orai1ß in the plasma membrane. Translocation of Orai1 forms to the plasma membrane was found to require the integrity of the actin cytoskeleton. Finally, expression of a dominant negative mutant of the small GTPase ARF6, and ARF6-T27N, abolished the translocation of compartmentalized Orai1 variants to the plasma membrane upon store depletion. These findings provide new insights into the mechanism that regulate the plasma membrane abundance of Orai1 variants after Ca2+ store depletion.


Calcium Channels , Calcium Release Activated Calcium Channels , ORAI1 Protein , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Release Activated Calcium Channels/metabolism , Calcium Signaling , Cell Membrane/metabolism , ORAI1 Protein/antagonists & inhibitors , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Thapsigargin/pharmacology , Humans , HEK293 Cells
11.
J Dairy Sci ; 106(10): 7131-7146, 2023 Oct.
Article En | MEDLINE | ID: mdl-37164848

Hypocalcemia in dairy cows is associated with a decrease of neutrophil adhesion and phagocytosis, an effect driven partly by changes in the expression of store-operated Ca2+ entry (SOCE)-related molecules. It is well established in nonruminants that neutrophils obtain the energy required for immune function through glycolysis. Whether glycolysis plays a role in the acquisition of energy by neutrophils during hypocalcemia in dairy cows is unknown. To address this relationship, we performed a cohort study and then a clinical trial. Neutrophils were isolated at 2 d postcalving from lactating Holstein dairy cows (average 2.83 ± 0.42 lactations, n = 6) diagnosed as clinically healthy (CON) or with plasma concentrations of Ca2+ <2.0 mmol/L as a criterion for diagnosing subclinical hypocalcemia (HYP, average 2.83 ± 0.42 lactations, n = 6). In the first experiment, neutrophils were isolated from blood of CON and HYP cows and used to analyze aspects of adhesion and phagocytosis function through quantitative reverse-transcription PCR along with confocal laser scanning microscopy, mRNA expression of the glycolysis-related gene hexokinase 2 (HKII), and components of the SOCE moiety ORAI calcium release-activated calcium modulator 1 (ORAI1, ORAI2, ORAI3, stromal interaction molecule 1 [STIM1], and STIM2). Results showed that adhesion and phagocytosis function were reduced in HYP cows. The mRNA expression of adhesion-related syndecan-4 (SDC4), integrin ß9 (ITGA9), and integrin ß3 (ITGB3) and phagocytosis-related molecules complement component 1 R subcomponent (C1R), CD36, tubulinß1 (TUBB1) were significantly decreased in the HYP group. In the second experiment, to address how glycolysis affects neutrophil adhesion and phagocytosis, neutrophils isolated from CON and HYP cows were treated with 2 µM HKII inhibitor benserazide-d3 or 1 µM fructose-bisphosphatase 1 (FBP1) inhibitor MB05032 for 1 h. Results revealed that the HKII inhibitor benserazide-d3 reduced phagocytosis and the mRNA abundance of ITGA9, and CD36 in the HYP group. The FBP1 inhibitor MB05032 increased adhesion and phagocytosis and increased mRNA abundance of HKII, ITGA9, and CD36 in the HYP group. Finally, to investigate the mechanism whereby SOCE-sensitive glycolysis affects neutrophil adhesion and phagocytosis, isolated neutrophils were treated with 1 µM SOCE activator thapsigargin or 50 µM inhibitor 2-APB for 1 h. Results showed that thapsigargin increased mRNA abundance of HKII, ITGA9, and CD36, and increased adhesion and phagocytosis in the HYP group. In contrast, 2-APB decreased mRNA abundance of HKII and both adhesion and phagocytosis of neutrophils in the CON group. Overall, the data indicated that SOCE-sensitive intracellular Ca2+ levels affect glycolysis and help regulate adhesion and phagocytosis of neutrophils during hypocalcemia in dairy cows.


Hypocalcemia , Humans , Female , Cattle , Animals , Hypocalcemia/veterinary , Hypocalcemia/metabolism , Neutrophils/metabolism , Calcium/metabolism , Lactation , Thapsigargin/pharmacology , Benserazide/pharmacology , Cohort Studies , Phagocytosis , RNA, Messenger
12.
Biol Pharm Bull ; 46(4): 630-635, 2023.
Article En | MEDLINE | ID: mdl-37005308

The improvement of type 2 diabetes mellitus induced by naturally occurring polyphenols, known as flavonoids, has received considerable attention. However, there is a dearth of information regarding the effect of the trihydroxyflavone apigenin on pancreatic ß-cell function. In the present study, the anti-diabetic effect of apigenin on pancreatic ß-cell insulin secretion, apoptosis, and the mechanism underlying its anti-diabetic effects, were investigated in the INS-ID ß-cell line. The results showed that apigenin concentration-dependently facilitated 11.1-mM glucose-induced insulin secretion, which peaked at 30 µM. Apigenin also concentration-dependently inhibited the expression of endoplasmic reticulum (ER) stress signaling proteins, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) and cleaved caspase-3, which was elevated by thapsigargin in INS-1D cells, with peak suppression at 30 µM. This was strongly correlated with the results of flow cytometric analysis of annexin V/propidium iodide (PI) staining and DNA fragmentation analysis. Moreover, the increased expression of thioredoxin-interacting protein (TXNIP) induced by thapsigargin was remarkably reduced by apigenin in a concentration-dependent manner. These results suggest that apigenin is an attractive candidate with remarkable and potent anti-diabetic effects on ß-cells, which are mediated by facilitating glucose-stimulated insulin secretion and preventing ER stress-mediated ß-cell apoptosis, the latter of which may be possibly mediated by reduced expression of CHOP and TXNIP, thereby promoting ß-cell survival and function.


Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 2/metabolism , Apigenin/pharmacology , Thapsigargin/metabolism , Thapsigargin/pharmacology , Apoptosis , Endoplasmic Reticulum Stress , Glucose/metabolism , Transcription Factor CHOP/metabolism
13.
Int J Mol Med ; 51(5)2023 05.
Article En | MEDLINE | ID: mdl-37026514

Salusin­α and adiponectin, are vasoactive peptides with numerous similar biological effects related to lipid metabolism. Adiponectin has been shown to reduce fatty acid oxidation and to inhibit lipid synthesis of liver cells through its receptor, adiponectin receptor 2 (AdipoR2), but whether salusin­α is able to interact with AdipoR2, was not previously reported. To investigate this, in vitro experiments were carried out. The overexpression and interference recombinant plasmids were constructed with salusin­α. The lentiviral expression systems of salusin­α overexpression and interference were respectively synthesized in 293T cells, and 293T cells were infected with the lentivirus. Finally, the association between salusin­α and AdipoR2 was analyzed by semi­quantitative PCR. Subsequently, HepG2 cells were also infected with these viruses. The expression levels of AdipoR2, peroxisome proliferator­activated receptor­α (PPARα), apolipoprotein A5 (ApoA5) and sterol regulatory element­binding transcription factor 1 (SREBP­1c) were detected by western blotting, and AdipoR2 inhibitor (thapsigargin) and agonist [4­phenyl butyric acid (PBA)] were used to observe the resultant changes in the aforementioned molecules. The results obtained revealed that the overexpression of salusin­α increased the level of AdipoR2 in 293T and HepG2 cells, led to an upregulation of the levels of PPARα and ApoA5, and inhibited the expression of SREBP­1c, whereas the salusin­α interference lentivirus exerted the opposite effects. Notably, thapsigargin inhibited the expression of AdipoR2, PPARα and ApoA5 in HepG2 cells of pHAGE­Salusin­α group, and caused an increase in the level of SREBP­1c, whereas the opposite effects were observed in pLKO.1­shSalusin­α#1 group upon treatment with PBA. Taken together, these data demonstrated that overexpression of salusin­α upregulated AdipoR2, which in turn activated the PPARα/ApoA5/SREBP­1c signaling pathway to inhibit lipid synthesis in HepG2 cells, thereby providing theoretical data on which to base the clinical application of salusin­α as a novel peptide for molecular intervention in fatty liver disease.


Adiponectin , PPAR alpha , Humans , Hep G2 Cells , PPAR alpha/genetics , PPAR alpha/metabolism , Apolipoprotein A-V/metabolism , Adiponectin/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Thapsigargin/pharmacology , Lipid Metabolism
14.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article En | MEDLINE | ID: mdl-36675008

Celiac disease (CD) is an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals by genetically predisposed individuals. Constitutive differences between cells from CD patients and control subjects, including levels of protein phosphorylation, alterations of vesicular trafficking, and regulation of type 2 transglutaminase (TG2), have been reported. In the present work, we investigated how skin-derived fibroblasts from CD and control subjects responded to thapsigargin, an endoplasmic reticulum ER stress inducer, in an attempt to contribute to the comprehension of molecular features of the CD cellular phenotype. We analyzed Ca2+ levels by single-cell video-imaging and TG2 activity by a microplate assay. Western blots and PCR analyses were employed to monitor TG2 levels and markers of ER stress and autophagy. We found that the cytosolic and ER Ca2+ level of CD cells was lower than in control cells. Treatments with thapsigargin differently activated TG2 in control and CD cells, as well as caused slightly different responses regarding the activation of ER stress and the expression of autophagic markers. On the whole, our findings identified further molecular features of the celiac cellular phenotype and highlighted that CD cells appeared less capable of adapting to a stress condition and responding in a physiological way.


Celiac Disease , Humans , Celiac Disease/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Thapsigargin/pharmacology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Transglutaminases/genetics , Transglutaminases/metabolism , Autophagy , Homeostasis
15.
Cell Calcium ; 109: 102688, 2023 01.
Article En | MEDLINE | ID: mdl-36538845

Contact sites between the endoplasmic reticulum (ER) and mitochondria play a pivotal role in cell signaling, and the interaction between these organelles is dynamic and finely regulated. We have studied the role of ER Ca2+ concentration ([Ca2+]ER) in modulating this association in HeLa and HEK293 cells and human fibroblasts. According to Manders' coefficient, ER-mitochondria colocalization varied depending on the ER marker; it was the highest with ER-Tracker and the lowest with ER Ca2+ indicators (Mag-Fluo-4, erGAP3, and G-CEPIA1er) in both HeLa cells and human fibroblasts. Only GEM-CEPIA1er displayed a high colocalization with elongated mitochondria in HeLa cells, this ER Ca2+ indicator reveals low Ca2+ regions because this ion quenches its fluorescence. On the contrary, the typical rounded and fragmented mitochondria of HEK293 cells colocalized with Mag-Fluo-4 and, to a lesser extent, with GEM-CEPIA1er. The ablation of the three IP3R isoforms in HEK293 cells increased mitochondria-GEM-CEPIA1er colocalization. This pattern of colocalization was inversely correlated with the rate of ER Ca2+ leak evoked by thapsigargin (Tg). Moreover, Tg and Histamine in the absence of external Ca2+ increased mitochondria-ER colocalization. On the contrary, in the presence of external Ca2+, both Bafilomycin A1 and Tg reduced the mitochondria-ER interaction. Notably, knocking down MCU decreased mitochondria-ER colocalization. Overall, our data suggest that the [Ca2+] is not homogenous within the ER lumen and that mitochondria-ER interaction is modulated by the ER Ca2+ leak and the [Ca2+]i.


Endoplasmic Reticulum , Mitochondria , Humans , HeLa Cells , HEK293 Cells , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Thapsigargin/pharmacology , Calcium/metabolism , Calcium Signaling
16.
Antiviral Res ; 209: 105464, 2023 01.
Article En | MEDLINE | ID: mdl-36396026

Zika virus (ZIKV) is an arbovirus belonging to the family Flaviviridae. Since 2015, ZIKV infection has emerged as a leading cause of virus-induced placental insufficiency, microcephaly and other neuronal complications. Currently, no therapeutics have been approved to treat ZIKV infection. In this study, we examined how targeted inhibition of cellular organelles or trafficking processes affected ZIKV infection and replication in neural progenitor cells. We found that blocking endocytosis, Golgi function or structural filaments like actin or microtubules had moderate effects on virus replication. However, inducing endoplasmic reticulum (ER) stress by treatment with Thapsigargin substantially inhibited virus production, suggesting the ER might be a candidate cellular target. Further analysis showed that sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA) was important for ZIKV inhibition. Collectively, these studies indicate that targeting the SERCA-dependent ER stress pathway may be useful to develop antivirals to inhibit ZIKV replication.


Endoplasmic Reticulum Stress , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Thapsigargin , Zika Virus Infection , Zika Virus , Female , Humans , Pregnancy , Neurons/metabolism , Organelles/metabolism , Placenta , Virus Replication , Zika Virus/physiology , Endoplasmic Reticulum Stress/drug effects , Thapsigargin/pharmacology , Thapsigargin/therapeutic use , Sarcoplasmic Reticulum Calcium-Transporting ATPases/drug effects
17.
Genes (Basel) ; 13(11)2022 11 04.
Article En | MEDLINE | ID: mdl-36360274

Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) signaling via the accumulation of unfolded and misfolded proteins. ER stress leads to the production of reactive oxygen species (ROS), which are necessary to maintain redox homeostasis in the ER. Although peroxiredoxin 1 (Prx1) is an antioxidant enzyme that regulates intracellular ROS levels, the link between Prx1 and ER stress remains unclear. In this study, we investigated the role of Prx1 in X-box binding protein 1 (XBP-1) activation, the C/EBP homologous protein (CHOP) pathway, and apoptosis in response to ER stress. We observed that Prx1 overexpression inhibited the nuclear localization of XBP-1 and the expression of XBP-1 target genes and CHOP after thapsigargin (Tg) treatment to induce ER stress. In addition, Prx1 inhibited apoptosis and ROS production during ER stress. The ROS scavenger inhibited ER stress-induced apoptosis but did not affect XBP-1 activation and CHOP expression. Therefore, the biological role of Prx1 in ER stress may have important implications for ER stress-related diseases.


Peroxiredoxins , Unfolded Protein Response , Thapsigargin/pharmacology , Thapsigargin/metabolism , Reactive Oxygen Species/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Apoptosis/genetics
18.
Iran J Allergy Asthma Immunol ; 21(4): 418-428, 2022 Aug 12.
Article En | MEDLINE | ID: mdl-36243930

Fibroblast-like synoviocytes (FLSs) play a major role in the pathogenesis of rheumatoid arthritis (RA). Endoplasmic reticulum (ER) stress and dysregulation of unfolded protein response are involved in the resistance to apoptosis of FLSs in RA (RA-FLSs). MicroRNA (MiR)-211 plays an important role in controlling ER stress and apoptotic genes in a PKR-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-dependent manner. We investigated the effect of miR-211-5p overexpression on ER stress and apoptotic genes in RA-FLSs. FLSs were isolated from synovial tissues of trauma (n=10) and RA (n=10) patients. MiR-211-5p and mRNA expression of the selected genes involved in the PERK pathway and apoptosis regulation were measured in RA, trauma, and thapsigargin (Tg)-treated RA-FLSs. Afterward, Tg-treated RA-FLSs following miR-211-5p overexpression were evaluated for miR-211-5p and mRNA levels of the study genes. The expression of miR-211-5p, PERK, BAX, and BCL2 showed no differences between RA and trauma. However, the expression of ATF4 and BCL-XL showed a significant increase in trauma. In addition, the levels of C/EBP homologous protein (CHOP) and MCL1 indicated a significant increase in RA-FLSs. Tg treatment significantly increased the expression of PERK, ATF4, and CHOP in RA-FLSs with no effect on miR-211-5p, BAX, BCL2, BCL-XL, and MCL1. Furthermore, Tg treatment following miR-211-5p overexpression in RA-FLSs showed a significant increase in levels of miR-211-5p with no changes in apoptotic genes. MiR-211-5p overexpression in stimulated RA-FLSs did not alter the levels of selected genes involved in apoptosis regulation. However, more investigations are necessary to determine the ER stress role in apoptosis regulation in RA-FLSs.


Arthritis, Rheumatoid , MicroRNAs , Synoviocytes , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/pharmacology , Apoptosis/genetics , Arthritis, Rheumatoid/genetics , Cell Proliferation , Cells, Cultured , Endoplasmic Reticulum Stress/genetics , Fibroblasts , Humans , MicroRNAs/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , RNA, Messenger/metabolism , Synoviocytes/metabolism , Synoviocytes/pathology , Thapsigargin/metabolism , Thapsigargin/pharmacology , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology
19.
Cells ; 11(20)2022 10 14.
Article En | MEDLINE | ID: mdl-36291093

Calcium signalling in platelets through store operated Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) mechanisms is crucial for platelet activation and function. Orai1 proteins have been implicated in platelet's SOCE. In this study we evaluated the contribution of Orai1 proteins to these processes using washed platelets from adult mice from both genders with platelet-specific deletion of the Orai1 gene (Orai1flox/flox; Pf4-Cre termed as Orai1Plt-KO) since mice with ubiquitous Orai1 deficiency show early lethality. Platelet aggregation as well as Ca2+ entry and release were measured in vitro following stimulation with collagen, collagen related peptide (CRP), thromboxane A2 analogue U46619, thrombin, ADP and the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin, respectively. SOCE and aggregation induced by Thapsigargin up to a concentration of 0.3 µM was abrogated in Orai1-deficient platelets. Receptor-operated Ca2+-entry and/or platelet aggregation induced by CRP, U46619 or thrombin were partially affected by Orai1 deletion depending on the gender. In contrast, ADP-, collagen- and CRP-induced aggregation was comparable in Orai1Plt-KO platelets and control cells over the entire concentration range. Our results reinforce the indispensability of Orai1 proteins for SOCE in murine platelets, contribute to understand its role in agonist-dependent signalling and emphasize the importance to analyse platelets from both genders.


Blood Platelets , Calcium , ORAI1 Protein , Animals , Female , Male , Mice , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Blood Platelets/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Collagen/metabolism , ORAI1 Protein/metabolism , Peptides/metabolism , Stromal Interaction Molecule 1/metabolism , Thapsigargin/pharmacology , Thrombin/pharmacology , Thromboxane A2/metabolism
20.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article En | MEDLINE | ID: mdl-36142626

Fibrosis is a common final pathway of chronic kidney disease, which is a major incurable disease. Although fibrosis has an irreversible pathophysiology, the molecular and cellular mechanisms responsible remain unclear and no specific treatment is available to halt the progress of renal fibrosis. Thus, an improved understanding of the cellular mechanism involved and a novel therapeutic approach are urgently required for end-stage renal disease (ESRD). We investigated the role played by interleukin-10 (IL-10, a potent anti-inflammatory cytokine) in kidney fibrosis and the mechanisms involved using IL-10-/- mice and TCMK-1 cells (mouse kidney tubular epithelial cell line). Endoplasmic reticulum stress (ERS), apoptosis, and fibrosis in IL-10-/- mice were more severe than in IL-10+/+ mice after unilateral ureteral obstruction (UUO). The 4-Phenylbutyrate (an ERS inhibitor) treatment induced dramatic reductions in ERS, apoptosis, and fibrosis-associated factors in the renal tissues of IL-10-/- mice, compared to wild-type controls after UUO. On the other hand, in cultured TCMK-1 cells, the ERS inducers (tunicamycin, thapsigargin, or brefeldin A) enhanced the expressions of proapoptotic and profibrotic factors, though these effects were mitigated by IL-10. These results were supported by the observation that IL-10 siRNA transfection aggravated tunicamycin-induced CHOP and a-SMA expressions in TCMK-1 cells. We conclude that the anti-fibrotic effects of IL-10 were attributable to the inhibition of ERS-mediated apoptosis and believe that the results of this study improve the understanding of the cellular mechanism responsible for fibrosis and aid in the development of novel therapeutic approaches.


Interleukin-10 , Kidney Diseases , Renal Insufficiency, Chronic , Ureteral Obstruction , Animals , Apoptosis , Brefeldin A/pharmacology , Disease Models, Animal , Endoplasmic Reticulum Stress , Fibrosis , Interleukin-10/metabolism , Kidney/metabolism , Kidney Diseases/metabolism , Mice , RNA, Small Interfering/metabolism , Renal Insufficiency, Chronic/metabolism , Thapsigargin/pharmacology , Tunicamycin/pharmacology , Ureteral Obstruction/metabolism
...